Description
Human pluripotent stem cells (hPSC) generate hematopoietic progenitor cells (HPC), but fail to engraft xenograft models, which is a hallmark feature of adult/somatic hematopoietic stem cells (HSC) from human donors. Progress to derive hPSC-derived HSCs has relied on cell autonomous approaches that force expression of transcription factors (TF), however the role of bone marrow (BM) niche remains poorly understood. Here, we quantified a failure of hPSC-HPCs to survive even in the first 24 h upon transplantation into the BM. Across several hPSC-HPC differentiation methodologies, we identified the lack of CXCR4 expression and network function. Ectopic CXCR4 conferred CXCL12-dependent signaling of hPSC-HPCs in biochemical assays and increased migration/chemotaxis and progenitor capacity, as well as survival and proliferation following transplantation in vivo. In addition, hPSC-HPCs forced to express CXCR4 demonstrated a transcriptional shift toward somatic HPCs, but this approach failed to produce long-term HSC engraftment. Our results reveal that independent of differentiation methods, networks involving CXCR4 should be targeted to generate HSCs with in vivo function from hPSCs.