github link
Accession IconGSE15254

Integration of the general amino acid control and nitrogen regulatory pathways in yeast nitrogen assimilation

Organism Icon Saccharomyces cerevisiae
Sample Icon 72 Downloadable Samples
Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Submitter Supplied Information

Description
Two nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), control yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC pathway, involving Gcn2p phosphorylation of eIF2 and preferential translation of GCN4, a transcription activator of genes involved in amino acid metabolism. TOR senses nitrogen availability and regulates gene expression through transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome in response to amino acid starvation and rapamycin treatment. Of the ~2500 genes whose expression was changed by 2-fold or greater, Gcn4p and Gln3p were required for 542 and 657 genes, respectively. While Gcn4p activates a common core of 57 genes in response to amino acid starvation or rapamycin treatment, the different stress arrangements allow for variations in Gcn4p-directed transcription. With few exceptions, genes requiring Gcn2p eIF2 kinase for induced expression also required Gcn4p, emphasizing the role of Gcn2p as an upstream activator of Gcn4p-directed transcription. There is also significant coordination between the GAAC and TOR pathways, with Gcn4p being required for activation of more genes during rapamycin treatment than Gln3p. Importantly, TOR regulates the GAAC-directed transcription of genes required for assimilation of nitrogen sources, such as -amino-butyric acid. Therefore, yeast has integrated gene expression responses to amino acid abundance and nitrogen source quality through the control of Gcn2p phosphorylation of eIF2 and GCN4 translation.
PubMed ID
Total Samples
72
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Treatment
Processing Information
Additional Metadata
No rows found
Loading...