github link
Accession IconGSE153195

Metabolomic and Transcriptomic Signatures of Prenatal Excessive Methionine in Mice Support Nature Rather than Nurture in the Pathogenesis and Therapy of Schizophrenia

Organism Icon Mus musculus
Sample Icon 12 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Submitter Supplied Information

Description
Abstract: The imbalance of prenatal micronutrients may perturb one-carbon (C1) metabolism and increase the risk for neuropsychiatric disorders. Prenatal excessive methionine (MET) produces in mice behavioral phenotypes reminiscent of human schizophrenia. Whether in-utero programming or early life caregiving mediate these effects is, however, unknown. Here, we show that the behavioral deficits of MET are independent of the early life mother-infant interaction. We also show that MET produces in early life profound changes in the brain C1 pathway components as well as glutamate transmission, mitochondrial function, and lipid metabolism. Bioinformatics analysis integrating metabolomics and transcriptomic data reveal dysregulations of glutamate transmission and lipid metabolism, and identify perturbed pathways of methylation and redox reactions. Our transcriptomics Linkage analysis of MET mice and schizophrenia subjects reveals master genes involved in inflammation and myelination. Finally, we identify potential metabolites as early biomarkers for neurodevelopmental defects and suggest new therapeutic targets for schizophrenia.
PubMed ID
Total Samples
12
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...