Description
Medullary breast cancers (MBC) display a basal profile, but a favorable prognosis. We hypothesized that a previously published 368-gene expression signature associated with MBC might serve to define a prognostic classifier in basal cancers. We collected public gene expression and histoclinical data of 2145 invasive early breast adenocarcinomas. We developed a Support Vector Machine (SVM) classifier based on this 368-gene list in a learning set, and tested its predictive performances in an independent validation set. Then, we assessed its prognostic value and that of six prognostic signatures for disease-free survival (DFS) in the remaining 2034 samples. The SVM model accurately classified all MBC samples in the learning and validation sets. A total of 466 cases were basal across other sets. The SVM classifier separated them into two subgroups, subgroup 1 (resembling MBC) and subgroup 2 (not resembling MBC). Subgroup 1 exhibited 71% 5-year DFS, whereas subgroup 2 exhibited 50% (p=9.93E-05). The classifier outperformed the classical prognostic variables in multivariate analysis, conferring lesser risk for relapse in subgroup 1 (HR=0.52, p=3.9E-04). This prognostic value was specific to the basal subtype, in which none of the other prognostic signatures was informative.