Description
The initial segment of the epididymis is vital for male fertility, therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from epididymis, a subset of cells within the initial segment undergo apoptosis. In this study, microarray analyses was used to examine early changes in the downstream signal transduction pathways following the loss of lumicrine factors, and we discovered the following cascade of events leading to loss of protection and eventual apoptosis. First, mRNA expression of several key components of ERK pathway decreased sharply after 6 hours of loss protection from testicular lumicrine factors. After 12 hours, the levels of mRNA expression of STAT and NF-B pathways components increased, mRNA expression of genes encoding cell cycle inhibitors increased. After 18 hours of loss protection from testicular lumicrine factors, apoptosis was observed in the initial segment. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating ERK pathway, repressing STAT and NF-B pathways, and preventing a cascade of reactions leading to apoptosis.