Description
The outcome of infections with Toxoplasma gondii in humans is dependent in part on the genetic makeup of the infecting organism. Recent studies have indicated that most infecting Toxoplasma organisms fall into 1 of 3 canonical lineages. Previous studies have investigated the effects of Toxoplasma on its host cell transcriptome. Little is known, however, about the effects of three canonical lineages on brain cells, the principal site of parasite lifelong persistence. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to T. gondii infection using microarray analysis to characterize the strain-specific host cell response to 3 canonical T. gondii strains. We found that the extent of the expression changes varied considerably among the three strains. Neuroepithelial cells infected with type I exhibited the most differential gene expression, whereas type II infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to central nervous system while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter expression of a clearly defined set of genes. Moreover, Ingenuity pathway analysis (IPA) revealed the sophistication of different strain in its interactions with the host. These differences may explain some of the variation in the neurobiological effects of different strains of Toxoplasma on infected individuals.