github link
Accession IconGSE23293

Definition and characterization of the systemic T cell dysregulation in untreated indolent B cell lymphoma and very early CLL

Organism Icon Homo sapiens
Sample Icon 38 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Epidemiological data show that the immune system may control or promote emergence and growth of a neoplastic lymphomatous clone. Conversely, systemic lymphomas, especially myeloma and CLL, are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4+ cells, in patients with non-leukemic follicular and extranodal marginal zone lymphomas, but not in monoclonal gammopathy and early CLL. These numerical changes were correlated with a preactivated phenotype, hyperreactivity in vitro, presenescence, and a Th2 shift of peripheral T helper cells. No prominent alterations were found in the regulatory T cell compartment. Gene expression profiling of in vitro-stimulated CD4+ cells revealed an independent second alteration of T helper cell physiology which was most pronounced in early CLL but also detectable in FL/eMZL. This pattern consisted of downregulation of proximal and intermediate T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T cell dysfunction may contribute to significant immunodeficiency in non-leukemic indolent B-cell lymphomas as demonstrated by refractoriness to hepatitis B vaccination. The precise definition of systemic T cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation
PubMed ID
Total Samples
41
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Disease
Disease stage
Processing Information
Additional Metadata
No rows found
Loading...