github link
Accession IconGSE26366

Notch/HES1-mediated PARP1 activation: A cell-type specific mechanism for tumor suppression

Organism Icon Homo sapiens
Sample Icon 199 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Submitter Supplied Information

Description
Notch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T cell acute lymphoblastic leukemia (T-ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-ALL leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL, however the mechanism is not yet known. Here we report that HES1 regulates pro-apoptotic signals via the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. The interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of NAD+, diminished ATP levels, and translocation of the Apoptosis Inducing Factor (AIF) from mitochondria to the nucleus, resulting in apoptosis in B-ALL, but not T-ALL. Importantly, induction of Notch signaling via the Notch agonist peptide DSL can reproduce these events and leads to BALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism reveals a cell type-specific pro-apoptotic pathway which may lead to Notch agonist-based cancer therapeutics.
PubMed ID
Total Samples
206
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...