Description
Background: Septic shock heterogeneity has important implications for the conduct of clinical trials and individual patient management. We previously addressed this heterogeneity by indentifying 3 putative subclasses of children with septic shock based on a 100-gene expression signature corresponding to adaptive immunity and glucocorticoid receptor signaling. Herein we attempted to prospectively validate the existence of these gene expression-based subclasses in a validation cohort. Methods: Gene expression mosaics were generated from the 100 class-defining genes for 82 individual patients in the validation cohort. Patients were classified into 1 of 3 subclasses (A, B, or C) based on color and pattern similarity relative to reference mosaics generated from the original derivation cohort. Separate classifications were conducted by 21 individual clinicians and a computer-based algorithm. After subclassification the clinical database was mined for clinical phenotyping. Results: In the final consensus subclassification generated by clinicians, subclass A patients had a higher illness severity, as measured by illness severity scores and maximal organ failure, relative to subclasses B and C. The k coefficient across all possible inter-evaluator comparisons was 0.633. Similar observations were made based on the computer-generated subclassification. Patients in subclass A were also characterized by repression of a large number of genes having functional annotations related to zinc biology. Conclusions: We have validated the existence of subclasses of children with septic shock based on a biologically relevant, 100-gene expression signature. The subclasses can be indentified by clinicians without formal bioinformatics training, at a clinically relevant time point, and have clinically relevant phenotypic differences.