Description
The events regulating human preimplantation development are still largely unknown, due to scarcity of material, ethical and legal limitations, and lack of reliable techniques to faithfully amplify the transcriptome of a single cell. Nonetheless, knowledge in human embryology is gathering renewed interest due to its close relationship with both stem cell biology and epigenetic reprogramming to pluripotency, and their centrality to regenerative medicine. Using carefully timed genome-wide transcript analyses on single oocytes and embryos, the analysis of the data allowed us to uncover a series of successive waves of embryonic transcriptional initiation which start as early as the 2 cell stage. In addition, we identified hierarchical activation of genes involved in the regulation of pluripotency. Finally, we developed HumER, a free database of human preimplantation human development gene expression to serve the scientific community. Importantly, our work links early transcription in the human embryo with the correct execution of the pluripotency program later in development, and paves the way for the identification of factors to improve epigenetic reprogramming.