github link
Accession IconGSE31879

Alterations of methylome and transcriptome in human melanoma: the inverse relationship between epigenome integrity and BRAF mutation

Organism Icon Homo sapiens
Sample Icon 14 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Oncogenic mutation in BRAF gene is the single most frequent genetic alteration in human melanoma; however, this event per se is not sufficient to produce melanoma in vivo. We have investigated whether epigenetic changes, specifically aberrant DNA methylation and dysregulation of gene expression, alone or in combination with this genetic event, are involved in the genesis of human melanoma. We have constructed the whole of primary human melanomas in relation to their BRAF mutational status. Our methylation profiling identified a large number of hyper- or hypomethylated genes in melanoma tumors, many of which being novel and having the potential to serve as biomarkers. Gene ontology analysis revealed that gene categories involved in neuronal cell morphology and development, and skin and neurological disorders were highly enriched. Frequently methylated targets included developmental regulatory transcription factors and homeobox genes, which are mostly subjected to bivalent histone marking and Polycomb occupancy in embryonic stem cells. Notably, several genes involved in the MEK-ERK and the PI3K pathways, two of the most frequently perturbed pathways in human melanoma, showed extensive methylation changes. Gene expression profiling identified a long list of dysregulated genes, many of which being involved in melanocytes development and differentiation, and showing concomitant aberrant DNA methylation. Sub-typing of the melanoma tumors based on BRAF mutational status revealed that tumors with a mutated BRAF had distinctive and more pronounced changes in both DNA methylation and gene expression profiles than tumors carrying the wildtype BRAF. The differentially compromised methylome and transcriptome of melanomas (dependent on BRAF mutation) deserves special attention because many epigenetic alterations, including DNA methylation-mediated regulation of gene expression, are potentially reversible. The dichotomous integrity of epigenome in human melanoma holds great promise for the field of personalized medicine.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
30
Submitter’s Institution
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Disease
Processing Information
Additional Metadata
No rows found
Loading...