Description
Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear if drug efficacy data obtained from xenograft models translate into clinically-relevant treatment modalities. In this study, we have generated a panel of 28 patient-derived colorectal cancer explants (PDCCEs), an extension of our previous work, by direct transplantation of human colorectal cancer (CRC) tissues into NOD-SCID mice. A comprehensive histological and molecular evaluation of PDCCEs and their corresponding patient tumor demonstrates that PDCCEs maintain histological features and global biology through multiple passages. Furthermore, we demonstrate that in vivo sensitivity of PDCCEs to oxaliplatin can predict patient outcomes. Our findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and can serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with CRC.