github link
Accession IconGSE37923

Functional expression of membrane alanyl-aminopeptidase (CD13/APN) promotes tumor cell proliferation and neoangiogenesis in malignant gliomas.

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Submitter Supplied Information

Description
Malignant gliomas are characterized by marked neovascularization and increased tumor cell proliferation. Recently, membrane alanyl-aminopeptidase (CD13/APN) has been identified to play a crucial role in neoangiogenesis. In this study, we show that among various central nervous system tumors, malignant astrocytomas are unique in their high expression levels of functionally active CD13/APN. CD13/APN was found in both tumor cells and tumor vessels of malignant astrocytomas, while in low-grade astrocytomas only endothelial cells of tumor vessels expressed CD13/APN. Inhibitors of the enzymatic activity of CD13/APN significantly reduced the proliferation of U87MG and U138MG malignant glioma cells. Inhibition of CD13/APN mRNA expression by siRNA in glioma cells co-cultured with human umbilical vein endothelial cells (HUVEC) effectively decreased blood vessel formation. Pro-angiogenic factors like bFGF and VEGF induced CD13/APN expression in glioma cells. Treatment of U87MG and U138MG cells with CD13/APN inhibitors resulted in an increased mRNA expression of VEGF and VEGF receptor 2 (VEGF-R2) in these cells. Taken together, these findings provide evidence that CD13/APN promotes tumor cell proliferation and blood vessel formation in malignant astrocytomas. Remarkably, inhibition of CD13/APN induces an angiogenic expression profile via an autocrine feed-back mechanism involving the VEGF/VEGF-R2 system in malignant gliomas.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
4
Submitter’s Institution
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...