Description
Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, we determined the complement of circadian transcripts in adult Drosophila heads. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for 400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression was associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per0, tim01, and ClkJrk), are consistent with both known and novel regulatory mechanisms controlling circadian transcription (Claridge-Chang et al., Neuron. 2001 Nov 20;32(4):657-71).