github link
Accession IconGSE40170

Flow dependent gene expression in the rat aorta under physiological conditions

Organism Icon Rattus norvegicus
Sample Icon 28 Downloadable Samples
Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Submitter Supplied Information

Description
Objective: Shear forces play a key role in the maintenance of vessel wall integrity. Current understanding regarding shear-dependent gene expression is mainly based on in vitro or in vivo observations with experimentally deranged shear, hence reflecting acute molecular events in relation to flow. Our objective was to combine computational fluid dynamic (CFD) simulations with global microarray analysis to study flow-dependent vessel wall biology in portions of the entire aorta under physiological conditions. Methods and Results: Animal-specific WSS magnitude and vector direction were estimated using CFD based on aortic geometry and flow information acquired by MRI. Two distinct flow pattern regions were identified in the normal rat aorta; the distal part of the inner curvature being exposed to low WSS and a non-uniform vector direction, and a region along the outer curvature being subjected to markedly higher levels of WSS and a uniform vector direction. Microarray analysis identified numerous novel mechanosensitive genes, including Hand2, trpc4 and slain2, and confirmed well-known ones, such as klf2 and BMP4. Three genes were further validated for protein , including Hand2, which showed higher expression in the endothelium in regions exposed to disturbed flow. Gene ontology analysis revealed an over-representation of genes involved in transcriptional regulation.
PubMed ID
Total Samples
28
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...