Description
The role of FoxP3+ regulatory T (Treg) cells in the maintenance of immunological tolerance is well established. Recently, genome-wide association studies (GWAS) in humans have associated polymorphisms within the BACH2 locus encoding the transcription factor BTB and CNC homology 1, basic leucine zipper transcription factor 2 (Bach2) with diverse allergic and autoimmune diseases including asthma, multiple sclerosis, Crohn's disease, celiac disease, generalized vitiligo and type 1 diabetes. Common to these diseases is a failure to adequately maintain immunological tolerance. However, a role for Bach2 in this process has not been established.Here, by assessing the phenotype of mice in which the Bach2 gene is disrupted, we demonstrate a non-redundant role for Bach2 in the prevention of a spontaneous lethal inflammatory disorder predominantly affecting the lung and gut with excessive T helper 2 (Th2) responses and formation of circulating autoantibodies. Bach2 was necessary for efficient induction of FoxP3 expression both during thymopoesis and upon stimulation of nave peripheral CD4+ T cells under Treg polarizing conditions in vitro. Consequently, in bone marrow reconstitution experiments, Bach2 expression within the haematopoetic system was necessary for suppression of lethal autoimmunity in a manner that was FoxP3 dependent. These findings demonstrate a requirement for Bach2 in early lineage commitment of both thymic and induced Treg cells and point to shared mechanisms that underlie diverse allergic and autoimmune disorders that may serve as targets in the development of novel therapeutic strategies.