Description
Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). However, successfully reprogrammed cells are highly proliferative and escape from cellular senescence - it is therefore conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency and size was higher when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs had indistinguishable in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs this is of relevance for standardization and automation of cell culture procedures