Description
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness, and a maximum life span of 3 months due to respiratory impairment. To address the accelerated development of muscular dystrophy in DMD pigs as compared to human patients, we performed a genome-wide transcriptome study of M. biceps femoris samples from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good accordance with the findings of gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis, and impaired metabolic activity. The transcriptome profile of 2-day-old DMD pigs pointed towards increased protein and DNA catabolism, reduced extracellular matrix formation and cell proliferation and showed similarities with transcriptome changes induced by exercise injury in muscle. Our transcriptome studies provide new insights into congenital changes associated with dystrophin deficiency and secondary complications arising during postnatal development. Thus the DMD pig is a useful model to determine the hierarchy of physiological derangements in dystrophin-deficient muscle.