github link
Accession IconGSE44950

Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments [HEK293DYG]

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Submitter Supplied Information

Description
The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation.
PubMed ID
Total Samples
6
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...