Description
Apoptosis is deregulated in most, if not all, cancers, including hematological malignancies. In this study, we wanted to test whether primary acute myeloid leukemia (AML) samples are sensitive for inhibitor of apoptosis (IAP) protein antagonist treatment in vitro, and which AML subgroup might profit most from such a novel therapeutic strategy. We treated diagnostic samples of 67 adult AML patients with either cytarabine (ara-C) or IAP antagonist BV6 and correlated sensitivity with clinical, cytogenetic and molecular markers, and expression levels of selected genes involved in apoptosis. Primary AML samples showed differential sensitivity to treatment with either ara-C (40% sensitive, 17% intermediate, 43% resistant) or BV6 (51% sensitive, 21% intermediate, 28% resistant). Notably, 69% of ara-C resistant samples showed a good to fair response to IAP inhibition. Furthermore, combination treatment of ara-C with BV6 showed additive effects in most samples. Differences in sensitivity to IAP antagonist treatment correlated with significantly elevated expression levels of TNF and lower levels of XIAP in BV6 sensitive samples, as well as with NPM1 mutations. Gene expression profiling pointed to apoptosis-related pathways, which were specifically induced by IAP inhibition in sensitive samples. Thus, our results suggest IAP inhibition as a potential novel therapeutic option in AML.