github link
Accession IconGSE49418

Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement tissue specifically and independently in Arabidopsis

Organism Icon Arabidopsis thaliana
Sample Icon 12 Downloadable Samples
Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Submitter Supplied Information

Description
Drought and salt stress severely inhibit plant growth and development. However, the regulatory mechanisms of plants in response to these stresses are not fully understood. Here we find that the expression of a WRKY transcription factor WRKY46 is rapidly induced by drought, salt and oxidative stresses. Mutations of WRKY46 by T-DNA insertion lead to more sensitive to drought and salt stress, whereas, overexpression of WRKY46 exhibits hypersensitive in soil culture with higher water loss rate, but increased tolerance on the agar plates. ABA induced stomatal closing is impaired in the WRKY46 overexpressing line (OV46), which is potentially due to the lower ROS accumulation in the guard cells. Real-time qPCR and GUS activity assay further demonstrate that WRKY46 is expressed in guard cells, but its expression is not affected by dehydration treatment, suggesting different regulatory mechanisms for WRKY46 between guard cells and other WRKY46 expressed tissues. The stomatal movement and conductance assay indicate that WRKY46 is involved in light-dependent stomatal opening. Further microarray analysis reveals that WRKY46 regulates a set of genes involved in cellular osmoprotection and redox homeostasis under dehydration stress. Determinations of ROS and MDA content confirm its role in oxidative detoxification under stress. Furthermore, we find that WRKY46 modulates light-dependent starch metabolism in guard cells via regulating QQS gene expression. Taken together, we demonstrate that WRKY46 plays a role in modulating cellular osmoprotection and redox homeostasis under drought and salt stress, and functions independently in stomatal movement via regulating light-dependent starch metabolism and ROS levels in guard cells.
PubMed ID
Total Samples
12
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Treatment
Processing Information
Additional Metadata
No rows found
Loading...