Description
Joint injury and osteoarthritis affect millions of people worldwide, but attempts to generate articular cartilage using adult stem/progenitor cells have been unsuccessful. We hypothesized that recapitulation of the human developmental chondrogenic program using pluripotent stem cells (PSCs) may represent a superior approach for cartilage restoration. Using laser capture microdissection followed by microarray analysis, we first defined a surface phenotype (CD146low/negCD166low/negCD73+CD44lowBMPR1B+) distinguishing the earliest cartilage committed cells (pre-chondrocytes) at 5-6 weeks of development; pellet assays confirmed these cells as functional, chondrocyte-restricted progenitors. Flow cytometry, qPCR and immunohistochemistry at 17 weeks revealed that the superficial layer of peri-articular chondrocytes was enriched in cells with this surface phenotype. Isolation of cells with a similar immunophenotype from differentiating human PSCs revealed a population of CD166negBMPR1B+ putative pre-chondrocytes. Functional characterization confirmed these cells as cartilage-committed, chondrocyte progenitors. The identification of a specific molecular signature for primary cartilagecommitted progenitors may provide essential knowledge for the generation of purified, clinically relevant cartilage cells from PSCs.