github link
Accession IconGSE57788

MMS induced expression changes (Drosophila)

Organism Icon Drosophila melanogaster
Sample Icon 36 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
Despite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
PubMed ID
Total Samples
36
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...