github link
Accession IconGSE58942

The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines

Organism Icon Homo sapiens
Sample Icon 187 Downloadable Samples
Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Submitter Supplied Information

Description
Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) are a widely used renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. However, the extent to which LCLs are a faithful model system is relatively unknown. We have previously shown that gene expression profiles of newly established LCLs maintain a strong individual component. Here, we extend our study to investigate the effect of freeze-thaw cycles on gene expression patterns in mature LCLs, especially in the context of inter-individual variation in gene regulation. We found a profound difference in the gene expression profiles of newly established and mature LCLs. Once newly established LCLs undergo a freeze-thaw cycle, the individual specific gene expression signatures become much less pronounced as the gene regulatory programs in LCLs from different individuals converge to a more uniform profile, which reflects a mature transformed B cell phenotype. As expected, previously identified eQTLs are enriched among the relatively few genes whose regulations in mature LCLs maintain marked individual signatures. We thus conclude that findings and insight drawn from gene regulatory studies in mature LCLs are generally not affected by artificial nature of the LCL model system and are likely to faithfully reflect regulatory interactions in primary tissues. However, our data indicate that many aspects of primary B cell biology cannot be observed and studied in mature LCL cultures.
PubMed ID
Total Samples
187
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...