github link
Accession IconGSE62210

Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntingtons model mice

Organism Icon Mus musculus
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Description
Huntingtons disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer lifespans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyglutamine length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.
PubMed ID
Total Samples
12
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...