Description
The myogenic regulatory factor MRF4 is expressed at high levels in myofibers of adult skeletal muscle, but its function is unknown. Here we show that knockdown of MRF4 in adult muscle causes hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and the widespread activation of genes involved in muscle contraction, excitation-contraction coupling and energy metabolism, many of which are known targets of MEF2 transcription factors. Genes regulated by MEF2 represent the top-ranking gene set enriched after Mrf4 RNAi, and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The role of MEF2 in mediating the effect of MRF4 knockdown is supported by the finding that Mrf4 RNAi-dependent increase in fiber size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofiber hypertrophy. The nuclear localization of the MEF2 co-repressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. The demonstration that fiber size in adult skeletal muscle is controlled by the MRF4-MEF2 axis opens new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.