github link
Accession IconGSE67297

Cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus.

Organism Icon Homo sapiens
Sample Icon 14 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Submitter Supplied Information

Description
Background: The prevalence of type 2 diabetes has increased dramatically in recent decades. Increasing brown adipose tissue (BAT) mass and activity has recently emerged as an interesting approach to not only increase energy expenditure, but also improve glucose homeostasis. BAT can be recruited by prolonged cold exposure in lean, healthy humans. Here, we tested whether cold acclimation could have therapeutic value for patients with type 2 diabetes by improving insulin sensitivity. Methods: Eight type 2 diabetic patients (age 59.35.8 years, BMI 29.83.2 kg/m2) followed a cold acclimation protocol, consisting of intermittent cold exposure (6 hours/day, 14-14.5 C) for 12 consecutive days. Before and after cold acclimation, cold-induced BAT activity was assessed by [18F]FDG-PET/CT scanning, insulin sensitivity at thermoneutrality by a hyperinsulinemic-euglycemic clamp, and muscle and WAT biopsies were taken. Results: Cold-induced BAT activity was low, but increased in all patients upon cold acclimation (SUV from 0.400.29 to 0.630.78, p<0.05). Interestingly, insulin sensitivity showed a very pronounced 40% increase upon cold acclimation (glucose rate of disappearance from 14.94.1 to 20.56.9 mol kg-1 min-1, p<0.05). A 40% increase in insulin sensitivity cannot be explained by BAT glucose uptake, in fact basal skeletal muscle GLUT4 content and translocation was markedly increased after cold acclimation, without effects on insulin signaling or AMPk activation. Conclusions: Regular mild cold exposure has marked effects on insulin sensitivity, which are accompanied by small increases in BAT activity and more pronounced effects on skeletal muscle. These data suggest a novel therapeutic option for the treatment of type 2 diabetes.
PubMed ID
Total Samples
14
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Subject
Processing Information
Additional Metadata
No rows found
Loading...