github link
Accession IconGSE67916

Gene expression analysis in tamoxifen resistant ER+ breast cancer cell lines

Organism Icon Homo sapiens
Sample Icon 17 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analysis and identified 366 genes with altered expression in four unique tamoxifen resistant (TamR) cell lines vs the parental tamoxifen sensitive MCF7/S0.5 cell line. Most of these genes were funcationally linked to cell proliferation, death and control gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF7/S0.5 cells. Moreover, overexpression of FYN in parental tamoxifen-sensitive MCF7/S0.5 cells resulted in reduced sensitivity to tamoxifen, demonstrating growth and survival promoting function of FYN in MCF7 cells. FYN knockdown in TamR cells led to reduced phosphorylation of 14-3-3 and CDc 25A, suggesting that FYN, by activation of of important cell cycle-associated proteins, may overcome the anti-proliferative effects of tamoxifen. Evaluation of the subcellular localization of FYN in primary breast tumors from two cohorts of endocrine-treated ER+ breast cancer patients, one with advanced disease (N = 47) and the other with early disease (N = 76), showed that in the former, plasma membrane-associated FYN expression strongly correlated with longer progression-free survival (P<0.0002). Similarly, in early breast cancer patients, membrane-associated expression of FYN in the primary breast tumor was significantly associated with increased metastasis-free (P<0.04) and overall (P<0.004) survival independent of tumor size, grade or lymph node status. Our results indicate that FYN has an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.
PubMed ID
Total Samples
18
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...