github link
Accession IconGSE68161

A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis.

Organism Icon Mus musculus
Sample Icon 14 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
Exercise training improves whole body glucose homeostasis through effects largely attributed to adaptations in skeletal muscle; however, training also affects other tissues including adipose tissue. To determine if exercise-induced adaptations to adipose tissue contribute to training-induced improvements in glucose homeostasis, subcutaneous white adipose tissue (scWAT) from trained or sedentary donor mice was transplanted into the visceral cavity of sedentary recipients. Remarkably, nine days post-transplantation, mice receiving trained scWAT had improved glucose tolerance and enhanced insulin sensitivity compared to mice transplanted with sedentary scWAT or sham-treated mice. Mice transplanted with trained scWAT had increased insulin-stimulated glucose uptake in tibialis anterior and soleus muscles and brown adipose tissue, suggesting that the transplanted scWAT exerted endocrine effects. Furthermore, the deleterious effects of high-fat feeding on glucose tolerance and insulin sensitivity were completely reversed if high-fat fed recipient mice were transplanted with trained scWAT. In additional experiments, voluntary exercise training by wheel running for only 11 days resulted in profound changes in scWAT including increased expression of 1550 genes involved in numerous cellular functions, including metabolism. Exercise training causes adaptations to scWAT that elicit metabolic improvements in other tissues, demonstrating a previously unrecognized role for adipose tissue in the beneficial effects of exercise on systemic glucose homeostasis.
PubMed ID
Total Samples
14
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...