Description
OBJECTIVE: To understand the molecular pathways underlying the cardiac preconditioning effect of short-term caloric restriction (CR). BACKGROUND: Lifelong CR has been suggested to reduce the incidence of cardiovascular disease through a variety of mechanisms. However, prolonged adherence to a CR life-style is difficult. Here we show how short-term CR protects the mouse heart from ischemia. METHODS: Male 10-12 wk old C57bl/6 mice were randomly assigned to an ad libitum (AL) diet with free access to regular chow, or CR, receiving 30% less food over a period of 7 days (d), prior to myocardial infarction (MI) via permanent coronary ligation. Prior to MI (d8), the left ventricles (LV) of AL and CR mice were collected for Western blot, DNA and microRNA (miR) analyses. In separate groups, infarct size, cardiac hemodynamics and protein abundance of caspase 3 was measured at d2 post-MI. RESULTS: This short-term model of CR was associated with cardio-protection, as evidenced by decreased infarct size (18.52.4% vs. 26.61.7%, N=10/group; P=0.01). cDNA and miR profiles pre-MI (N=5/group) identified genes modulated by short-term CR to be associated with circadian clock, oxidative stress, immune function, apoptosis, metabolism, angiogenesis, cytoskeleton and extracellular matrix (ECM). Western blots pre-MI revealed CR-associated increases in phosphorylated Akt and GSK3, reduced levels of phosphorylated AMPK and mitochondrial related proteins PGC-1, cytochrome C and cyclooxygenase (COX) IV, with no differences in the levels of phosphorylated eNOS or MAPK (ERK1/2; p38). CONCLUSIONS: Short-term CR for only 7d represents a preconditioning strategy that limits infarct size. It is associated with a unique gene and miR signature, including the activation of specific pro-survival kinases. These findings may have implications for therapeutic use of short-term CR. .