github link
Accession IconGSE83686

Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells with Nijmegen Breakage Syndrome

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Submitter Supplied Information

Description
Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress and abnormal cell cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show down-regulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed new light on the molecular mechanisms underlying this severe syndrome and further expand our knowledge of the genomic stress cells experience during the reprogramming process.
PubMed ID
Total Samples
6
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...