github link
Accession IconGSE86861

Global Gene Expression Analyses of Three BCC Subsets, Based on the Relative Level of Oct4A

Organism Icon Homo sapiens
Sample Icon 10 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Despite education and aggressive treatment, breast cancer (BC) remains a clinical problem. BC cells (BCCs) can migrate early to metastatic sites where they may exist in cellular dormancy for decades. Presently, there are no consensus markers for cancer stem cells (CSCs) that are involved in tumor initiation and progression, and drug resistance. The current designation of CSCs might comprise similar tumor initiating cells, but at different developmental phase. In order to understand these differences, we developed a working hierarchy of BCCs. We initiated the studies in which three BCC subsets were selected based on the relative expressions of the stem cell-linked genes, Octamer4A (Oct4A). The sorted BCCs were subjected to array analyses using Affymetrix gene chip. Hierarchical clustering indicated distinct gene expression among the three subsets. Differential gene expressions of membrane proteins validated three novel genes, TMEM-98, GPR64 and FAT4. These three genes, in combination of known markers for CSCs, CD44, CD24, aldehyde dehydrogenase 1 (ALDH1) and Oct4A, were used to stratify BCCs led to a working hierarchy of BCCs. The validity of the hierarchical BCCs was applied to blood samples from patients, during relapse, and before and after treatment. These studies resulted in the patients grouped with distinct BCCs in the circulation. The relevance of the latter findings are discussed with regards to prediction of treatment response and time of BC relapse. The findings require a larger cohort of patients in a prospective multi-center study. The stratification could be important to understand treatment response, strategies for alternative approaches, and an understanding of the interaction between particular BCC subsets and the tissue microenvironment.
PubMed ID
Total Samples
10

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...