github link
Accession IconGSE95307

Dual inhibition of G9a and DNMT1 Enhances Cell Reprogramming Promoting Induction of Mesenchymal-to-Epithelial Transition and Facilitating Transcription Factor Engagement in the Genome.

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Submitter Supplied Information

Description
The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of human iPSCs and could be used for therapeutic and regenerative medicine applications. In this study, we showed that a new first-in-class dual G9a/DNMT inhibitor CM272 compound improves the standard four-factor reprogramming efficiency of human fibroblast. The use of CM272 facilitates the generation of iPSC with only two factors, OCT4 and SOX2, allowing the removal of potentially oncogenic factors such as cMYC or KLF4. Taking a closer look at the early events occurring during cell reprogramming we demonstrated that treatment with our G9a/DNMT dual inhibitor induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to the genome and promotes mesenchymal to epithelial transition during cell reprogramming. Thus, the use of this new G9a/DNMT dual inhibitor compound may represent an interesting alternative for improving cell reprogramming.
PubMed ID
Total Samples
6
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Disease
Cell line
Processing Information
Additional Metadata
No rows found
Loading...