Description
The oncogenic mechanisms and tumour biology underpinning Clear Cell Sarcoma of Kidney (CCSK), the second commonest paediatric renal malignancy, are poorly understood and currently therapy depends heavily on Doxorubicin with cardiotoxic side-effects. Previously, we characterised the balanced t(10;17)(q22;p13) chromosomal translocation, identified at that time as the only recurrent genetic aberration in CCSK. This translocation results in an in-frame fusion of the YWHAE (encoding 14-3-3e) and NUTM2 genes, with a somatic incidence of 12%. Clinico-pathological features of that cohort suggested that this aberration might be associated with higher stage and grade disease. Since no primary CCSK cell line exists, we generated various stably transfected cell lines containing doxycycline-inducible HA-tagged-YWHAE-NUTM2, in order to study the effect of expressing this transcript. 14-3-3e-NUTM2-expressing cells exhibited significantly greater cell migration compared to mock-treated controls. Gene and protein expression studies conducted in parallel on this model system suggested dysregulation of signalling pathways as a basis to the migration changes. Importantly, by blocking these signalling pathways using anti-EGFR, anti-IGF1R and anti-PDGFa neutralising antibodies, the migratory advantage conferred by transcript expression was abrogated. These results support 14-3-3e-NUTM2 expression as a contributor to CCSK tumorigenesis and provide avenues for the exploration of novel therapeutic approaches in CCSK.