Description
MicroRNAs regulate gene expression through deadenylation, repression and mRNA decay. However, the contribution of each mechanism in non-steady-state situations remains unclear. We monitored the impact of miR-430 on ribosome occupancy of endogenous mRNAs in wild type and dicer mutants lacking mature miR-430. Our results indicate that miR-430 reduces the number of ribosomes on target mRNAs before causing mRNA decay. Translational repression occurs before complete deadenylation, and disrupting deadenylation using an internal poly(A) tail did not block target repression. Finally, we observe that ribosome density along the length of the target mRNA remains constant, suggesting that translational repression occurs by reducing the initiation rate rather than reducing elongation or causing ribosomal drop-off. In summary, our results show that miR-430 regulates translation initiation before inducing mRNA decay. Overall design: Time course parallel ribosome profiling and input mRNA quantification in wildtype and MZdicer mutant embryos