Description
Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. Overall design: WI-38 cells were either infected with BRAFV600E or Empty retroviral vectors and small RNA were prepared from these cells. As an additional control, WI-38 cells were serum starved and used to generate quiscent cells, which were also used to prepase small RNA. The small RNA were then used to generate small RNA library and were used on Illumina genome analyzer.