Description
Leber congenital amaurosis (LCA) includes congenital or early-onset blinding diseases, characterized by vision loss together with nystagmus and nonrecordable electroretinogram (ERG). At least 19 genes are associated with LCA. While most LCA is recessive, mutations in the homeodomain transcription factor gene CRX lead to autosomal dominant LCA. The mechanism of CRX-LCA is not understood. Here, we report a new spontaneous mouse mutant carrying a frameshift mutation in Crx (CrxRip). We show that, unlike Crx-/- mouse retina, the dominant Crx c.763del1 mutation in CrxRip results in congenital blindness with complete loss of ERG, yet the photoreceptors do not degenerate. Dominant CRX frameshift mutations associated with LCA mimic the CrxRip phenotype that can be rescued by Crx. RNA-Seq profiling reveals progressive and complete loss of rod differentiation factor Nrl in CrxRip, while residual Nrl remains in Crx-/- retina. Moreover, Nrl partially restores the rod phenotype in CrxRip/+ mice. We show that the binding of Otx2 to Nrl promoter is obliterated in CrxRip mutant, and ectopic Otx2 can rescue the rod phenotype. Therefore, Otx2 is required to maintain Nrl expression in developing rods to consolidate rod fate. Our studies provide the mechanism of congenital blindness caused by dominant CRX mutations and should assist in therapeutic design. Overall design: Retinal samples were harvested from WT, CrxRip/+, CrxRip/Rip, Crx-/- and Nrl-/- retina at postnatal days 2 and 21 for whole transcriptome sequencing (RNAseq). Each sample included 2 independent frozen retina and experiments were performed in duplicates. RNA-seq transcriptome libraries were constructed from 1 µg of total RNA.