Description
Remembrances of traumata range among the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that in mice successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes as revealed by whole genome RNA sequencing, which is accompanied by higher metabolic, synaptic and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata. Overall design: 3 biological replicates per group were analyzed. The material analyzed was whole hippocampi from one brain hemisphere, from which total RNA was extracted.