Description
Huntington''s Disease (HD) is a fatal neurodegenerative disorder caused by an extended polyglutamine repeat in the N-terminus of the huntingtin (Htt) protein. Reactive microglia and elevated cytokine levels are observed in the brains of HD patients, but the extent to which neuroinflammation results from extrinsic or cell-autonomous mechanisms is unknown. Furthermore, the impact of microglia activation on the pathogenesis of HD remains to be established. Using genome-wide approaches, we show that expression of mutant Htt in microglia promotes cell-autonomous pro-inflammatory transcriptional activation within microglia by increasing the expression and transcriptional activities of the myeloid lineage-determining factors PU.1 and C/EBPs. Elevated levels of PU.1 and its target genes are observed in the brains of mouse models and HD individuals. Moreover, mutant Htt expressing microglia exhibit an increased capacity to induce neuronal death ex vivo and in vivo in the presence of sterile inflammation. These findings suggest that expression of mutant Htt in microglia may contribute to neuronal pathology in Huntingtin disease. Overall design: RNA-Seq and ChIP-Seq for PU.1, C/EBP, and H3K4me2 in BV2 cells and RNA-Seq in primary microglia and macrophages