github link
Accession IconSRP041599

Detained introns are novel, widespread class of posttranscriptionally-spliced introns

Organism Icon Mus musculus
Sample Icon 9 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Submitter Supplied Information

Description
Removal of introns by pre-mRNA splicing is a critical and in some cases rate-limiting step in mammalian gene expression. Deep sequencing of mouse embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within poly(A) selected transcripts; we classify these as “detained” introns (DIs). We identified thousands of DIs flanking both constitutive and alternatively spliced exons in human and mouse cell lines. Drug inhibition of Clk SR-protein kinase activity triggered rapid splicing changes in a specific set of DIs, about half of which showed increased splicing and half increased intron detention, altering the transcript pool of over 300 genes. These data suggest a widespread mechanism by which a nuclear detained pool of mostly processed pre-mRNAs can be rapidly mobilized in response to stress or homeostatic autoregulation. Overall design: v6.5 mouse embryonic stem cells were untreated, treated with the Clk kinase inhibitor KH-CB19, or treated with DMSO as a negative control. Untreated cells were harvested and a single replicate was sequenced using a custom, ligation-based, stranded library preparation protocol. Treated cells were harvested at time 0 and at 2 hours post-treatment, and poly(A)-selected RNA-seq libraries were made from biological duplicates for each treatment/time, barcoded, and sequenced by strand-specific, paired-end sequencing using the Illumina TruSeq kit.
PubMed ID
Total Samples
9
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...