github link
Accession IconSRP043036

Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments

Organism Icon Saccharomyces cerevisiae
Sample Icon 12 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Submitter Supplied Information

Description
During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. Overall design: Ribosome profiling, or sequencing of ribosome-protected mRNA fragments, in yeast. We assay ribosome footprint sizes and positions in three conditions: untreated yeast (3 replicates) and yeast treated with translation inhibitors cycloheximide (2 replicates) and anisomycin (2 biological replicates, one technical replicate). We also treat yeast with 3-aminotriazole to measure the effect of limited histidine tRNAs on ribosome footprint size and distribution (two treatment durations).
PubMed ID
Total Samples
12
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Treatment
Subject
Processing Information
Additional Metadata
No rows found
Loading...