github link
Accession IconSRP051406

Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration.

Organism Icon Mus musculus
Sample Icon 35 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Submitter Supplied Information

Description
Rationale: Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective: The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results: We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions: Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. Overall design: Comparison of transcriptional programs of primary myocardial tissues sampled from neonatal mice and murine hearts undergoing post-injury regeneration, along with in vitro ESC-differentiated cardiomyocytes
PubMed ID
Total Samples
36
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...