Description
The bromodomain and extraterminal (BET) protein Brd4 is a validated drug target in leukemia, yet its regulatory function in this disease is not well understood. Here, we show that Brd4 chromatin occupancy in acute myeloid leukemia closely correlates with the hematopoietic transcription factors (TFs) Pu.1, Fli1, Erg, C/EBPa, C/EBPß, and Myb at nucleosome-depleted enhancer and promoter regions. We provide evidence that these TFs, in conjunction with the lysine acetyltransferase activity of p300/CBP, facilitate Brd4 recruitment to their occupied sites to promote transcriptional activation. Moreover, chemical inhibition of BET bromodomains is found to suppress the functional output each hematopoietic TF, thereby interfering with essential lineage-specific transcriptional circuits in this disease. These findings reveal a chromatin-based signaling cascade comprised of hematopoietic TFs, p300/CBP, and Brd4, which supports leukemia maintenance and is suppressed by BET bromodomain inhibition. Overall design: PolyA selected RNA-Seq for drug treated or shRNA-expressing MLL-AF9 transformed acute myeloid leukemia cells (RN2)