Description
We investigated the role of the transcriptional regulator Id2 in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by tet-regulated MLL-AF9 co-expressed with oncogenic NRASG12D (Tet-off MLL-AF9), we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in Tet-Off MLL-AF9 AML cells in vitro partially phenocopies MLL-AF9 depletion and results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. To compare gene expression changes associated with enforced Id2 expression and MLL-AF9 withdrawal, RNA sequencing analysis was performed on Tet-off MLL-AF9 cells transduced with an Id2 over-expressing or a control vector, or upon MLL-AF9 dox-inducible knock-down. Overall design: Primary AMLs driven by Tet-off inducible MLL/AF9 expression linked to dsRED reporter, in association with oncogenic NRASG12D (Tet-off MLL-AF9) were generated by reconstituting lethally irradiated congenic mice with foetal liver cells co-transduced with a Tet-Off-MLL-AF9-dRED retroviral vector and a second vector co-expressing NRASG12D together with the Tet-Off responsive transcriptional activator. RNA sequencing analysis sequencing analysis was performed on Tet-Off MLL-AF9/dsRED+ AML cells treated in vitro with doxycycline (DOX) for 4 days to inactivate MLL-AF9 expression or left untreated (UT). For the Id2 over-expression experiment, Tet-Off MLL-AF9/dsRED+ AML cells were transduced in vitro with an Id2-GFP or a control-GFP retroviral vector. Viable GFP-positive cells were FACS-sorted 2 days after transduction and used for RNA sequencing analysis.