github link
Accession IconSRP062428

Temporal transcriptomics suggest that twin-peaking genes reset the clock

Organism Icon Mus musculus
Sample Icon 46 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the true nature of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-Seq over a 24-hour light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase-shifting of the circadian clock. 342 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms. Overall design: Pooled dissected tissue of the suprachiasmatic nucleus from five adult male mice provided one of three replicates for each of six timepoints over a 12:12 light/dark (LD) cycle (ZT2, 6, 10, 14, 18 and 22). Each biological replicate was sequenced over 3 seperate lanes using Illumina HiSeq.
PubMed ID
Total Samples
54
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...