github link
Accession IconSRP064391

Development of Pathway Preferential Estrogens Affording Beneficial Metabolic and Vascular Actions without Reproductive Tissue Stimulation in Mice

Organism Icon Homo sapiens
Sample Icon 24 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
There is great medical need for estrogens having favorable pharmacological profiles, supporting desirable activities for menopausal women such as metabolic and vascular protection but lacking stimulatory activities on the breast or uterus. Here, we report the development of structurally novel estrogens with favorable target tissue-selective estrogenic activity. Through a process of structural alteration of the hormone estradiol that preserves essential chemical and physical features of estradiol but greatly moderates its binding affinity for the estrogen receptors (ERs), we obtained Pathway Preferential Estrogens (PaPEs) capable of having interaction with ER that is sufficient to activate the extranuclear-initiated signaling pathway preferentially over the direct nuclear-initiated pathway. PaPE modulate a pattern of gene regulation and cellular and biological processes that result in essentially no stimulation of reproductive and mammary tissues and breast cancer cells, but have a favorable pattern of activity on metabolic tissues and the vasculature. The structural permutation process represents a novel approach to govern the balance in utilization of extranuclear vs. nuclear pathways of ER action to obtain tissue-selective/non-nuclear pathway-preferential estrogens, which should prove to be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily. Overall design: 24 samples; inhibitor and time course experiments
PubMed ID
Total Samples
24
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...