github link
Accession IconSRP072106

The dynamic translatome of retinal ganglion cell axons during assembly and maintenance of the mouse visual system

Organism Icon Mus musculus
Sample Icon 23 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000, NextSeq 500

Submitter Supplied Information

Description
Local mRNA translation mediates the adaptive responses of axons to extrinsic signals but direct evidence that it occurs in mammalian CNS axons in vivo is scant. We developed an axon-TRAP-RiboTag approach in mouse that allows deep-sequencing analysis of ribosome-bound mRNAs in the retinal ganglion cell axons of the developing and adult retinotectal projection in vivo. The embryonic-to-postnatal axonal translatome comprises an evolving subset of enriched genes with axon-specific roles suggesting distinct steps in axon wiring, such as elongation, pruning and synaptogenesis. Adult axons, remarkably, have a complex translatome with strong links to axon survival, neurotransmission and neurodegenerative disease. Translationally co-regulated mRNA subsets share common upstream regulators, and novel sequence elements generated by alternative splicing that promote axonal mRNA translation. Our results indicate that intricate regulation of compartment-specific mRNA translation in mammalian CNS axons supports the formation and maintenance of neural circuits in vivo. Overall design: The profiling of ribosome-bound mRNAs in mouse retinal ganglion cell axons at 4 different developmental stages
PubMed ID
Total Samples
28
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...