github link
Accession IconSRP081104

Olfactory sensory neuron-specific IGF1R knockout in mice results in increased smell perception, insulin resistance and adiposity

Organism Icon Mus musculus
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Olfaction is fundamental for survival but there is little known about the connection between smell perception and metabolism. In this study we implemented IGF1R knockout mice in the olfactory sensory neurons, by olfactory marker protetin (OMP) Cre specific recombination, and investigated metabolic parameters, smell perception and transcriptome sequencing. We could demonstrate that IGF1R knockout in the olfactory sensory neurons results in enhanced smell perception, insulin resistance under normal chow diet conditions and increased adiposity in mice fed control diet. Transcriptome analysis of the olfactory epithelium revealed differential expression of markers for mature and immature olfactory sensory neurons, being down-regulated and up- regulated respectively, pointing to differentiation-dependent changes that result in increased olfactory perception. Collectively, this study provides evidence that enhanced smell perception can result in insulin resistance and increased adiposity. Overall design: mRNA profiles of olfactory sensory neurons (OSN) extracted from homozygous tissue-specific IGF1R knockout (OMPIGF1R) and respective cotnrol mice (OMPflfl) were generated by deep sequencing, in four replicates using Illumina sequencing
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...