Description
TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, heterozygous Tshz3-deficient mice show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. Overall design: Three independent replicates, each containing cortices from 3-4 embryos from multiple litters, were prepared from wild-type and Tshz3 mutant neocortex at E18.5. Caubit et al., TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat. Genet ###, xxx-yyy (2016).