Description
We report genome-wide expression changes that occur in mouse bone marrow-derived mesenchymal stem cells treated in triplicate for 24 hours with or without Cytochalasin D and/or CK666. mRNA-Seq analysis shows that both cell surface and the nucleus undergo phenotypic changes. Cytochalasin D enhanced expression of genes involved in pathways known to regulate osteoblast differentiation, including genes involved in development and cell signaling, including calcium ion binding, WNT and PI3K/AKT pathway. In summary, RNA-seq data reveal that the CytoD activates genes linked to osteogenesis, while CK666stimulates adipogenic genes. Overall design: Bone marrow-derived MSCs were maintained in MEM containing 10% fetal bovine serum, 100 µg/ml penicillin/streptomycin. For experiments, the cells were plated at a density of 10,000 cells/cm2 in 6-well culture plates and cultured for 1 day prior to application of treatments. Cells were treated with CytochalasinD and/or CK666 for 24h followed by preparation for RNA isolation. Purified RNA was then submitted for RNA-sequencing.